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What are space-time trajectories?

The most common space-time trajectories are constantly issued by 

meteorological institutions in the form of ensemble forecasts. 
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Figure: MetCoOp Ensemble Prediction System, issued 2019-08-15T00:00:00Z for Uppsala, Sweden 

The figure shows 

temperature time-

trajectories at a 

single grid point 

generated by the 

10 ensemble 

members of MEPS.
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Why do we need space-time trajectories?

Because the spatio-temporal dependence structure provides essential 

information to operational decision problems [1], for instance: 

• Electricity market participation. 

• Power system reserve quantification. 

• Stochastic model predictive control. 

• Probabilistic power flow simulations.
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Space-time trajectories from probabilistic forecasts

• A regression or machine learning model is often used to map numerical weather 

prediction forecasts to e.g. PV power or to reduce systematic bias in forecasts.

• A common way to issue probabilistic forecasts is by quantile regression, such 

that 𝑞𝜏 = 𝐹−1(𝜏) is the 𝜏th quantile forecast and 𝐹−1 an inverse cumulative 

distribution function (CDF).

• By choosing e.g. 𝜏 = [0.10, 0.30, … , 0.90] it is possible to issue a predictive 

discrete inverse CDF:
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Figure: Example of a predictive discrete inverse CDF.
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Space-time trajectories from probabilistic forecasts

• Drawing a random number 𝑢 from 𝑈[0,1] and interpolating, it is possible to 

generate a value from the discrete inverse CDF: 

• This is known as the inverse probability integral transform: 𝑥 = 𝐹−1(𝑢).

• When probabilistic forecasts are issued for 𝑧 = 1, … , 𝑍 locations and 𝑘 = 1,… , 𝐾
horizons, 𝐷 = 𝑍 × 𝐾 random numbers are required to generate 1 space-time 

trajectory.
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Figure: Generating a value from the discrete inverse CDF using a random 

number (0.82) and linear interpolation.
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Space-time trajectories from probabilistic forecasts

It is important that the uniform random numbers accurately represent the spatio-

temporal correlation. Consider the purely temporal example (5 × 𝐾):
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• We compare copulas to model the spatio-temporal dependence structure and 

sample correlated random numbers from it [2].

• Consider random variables 𝑋1, … , 𝑋𝐷 with CDFs 𝐹𝑋1 , … , 𝐹𝑋𝐷.

• Sklar’s theorem states that every multivariate CDF can be expressed using the 

marginals and a copula 𝐶: 𝐹𝑋1,…,𝑋𝐷 𝑋1, … , 𝑋𝐷 = 𝐶 𝐹𝑋1 𝑋1 , … , 𝐹𝑋𝐷 𝑋𝐷 . [3]

• The copula can be written as: 𝐶 𝑢1, … , 𝑢𝐷 = 𝐹𝑋1,…,𝑋𝐷 𝐹𝑋1
−1 𝑢1 , … , 𝐹𝑋𝐷

−1 𝑢𝐷 .

• Then, it is possible to sample random uniform numbers 𝑈1, … , 𝑈𝐷 and 

generate space-time trajectories.

Space-time trajectories from probabilistic forecasts
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Data and approach

• Aim: compare suitable copulas for 

multivariate solar forecasts.
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Start

Train	quantile	regression
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Figure: Oahu pyranometer network [4]. The 

red arrow indicates the prevailing wind 

direction. From [2]. 

Figure: Flowchart that presents the 

methodology for selecting the copula 

(offline) and how it is used in an online 

setting or on the available test dataset 

[2]. 
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Probabilistic and multivariate forecast assessment

• Probabilistic and multivariate forecasts should be calibrated for optimal 

decision-making processes.

• A flat rank histogram is a necessary condition for calibration, meaning that—on 

average—it is equiprobable for any ensemble member to predict the 

observation.

• Since there are 𝐷 dimensions instead of 1, dedicated ‘prerank’ functions have 

been proposed that result in the average and band depth rank histograms [4].

•

𝑦1 𝑦2 ⋯ 𝑦𝐷
𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝐷
𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝐷
⋮ ⋮ ⋱ ⋮

𝑥𝑆,1 𝑥𝑆,2 ⋯ 𝑥𝑆,𝐷

instead of 

𝑦1
𝑥1
𝑥2
⋮
𝑥𝑆



P
V
P
S

11

Results

• In this case, the Gaussian copula is 

not flexible enough to model the 

spatio-temporal dependence structure.

• The Student-t copula results in too 

high correlation or underdispersed

trajectories.

• The type of miscalibration from the 

rank histograms for the Clayton copula 

is inconclusive except that calibration 

overall is quite poor.

• The empirical copula produced slightly 

underdispersed trajectories caused by 

the probabilistic forecasts.

Figure: The multivariate rank histograms organized by copula 

(columns) and prerank function. The top row presents the average 

rank histogram and the bottom row represents the band depth rank 

histogram [2]. 
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Conclusions

• Space-time trajectories are an important input to decision-making processes 

where the spatio-temporal relationship contains valuable information.

• Space-time trajectories can be created through several techniques but we 

focused on probabilistic forecasts and copulas.

• A copula is a versatile tool that allows modeling the dependence structure and 

marginal distributions separately.

• We found that the parametric copulas (Gaussian, Student-t and Clayton) are in 

this case not flexible enough for the relatively large number of dimensions.

• The empirical copula showed better performance, which is probably because it 

is nonparametric.
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Thank you for your attention

Dennis van der Meer, Task 16

dennis.vandermeer@angstrom.uu.se
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