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What are space-time trajectories? :(;‘I‘
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The most common space-time trajectories are constantly issued by
meteorological institutions in the form of ensemble forecasts.
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Figure: MetCoOp Ensemble Prediction System, issued 2019-08-15T00:00:00Z for Uppsala, Sweden
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Why do we need space-time trajectories? :(E‘-‘
Because the spatio-temporal dependence structure provides essential
information to operational decision problems [1], for instance:
» Electricity market participation.
* Power system reserve guantification.
« Stochastic model predictive control.

* Probabilistic power flow simulations.
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Space-time trajectories from probabilistic forecasts :('i‘.‘

» A regression or machine learning model is often used to map numerical weather
prediction forecasts to e.g. PV power or to reduce systematic bias in forecasts.

« A common way to issue probabilistic forecasts is by quantile regression, such
that g, = F~1(7) is the t*® quantile forecast and F~* an inverse cumulative
distribution function (CDF).

* By choosing e.g. T = [0.10, 0.30, ..., 0.90] it is possible to issue a predictive
discrete inverse CDF:
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Figure: Example of a predictive discrete inverse CDF.



Space-time trajectories from probabilistic forecasts :('i‘-‘

« Drawing a random number u from U[0,1] and interpolating, it is possible to
generate a value from the discrete inverse CDF:
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Figure: Generating a value from the discrete inverse CDF using a random
number (0.82) and linear interpolation.

» This is known as the inverse probability integral transform: x = F~1(u).

* When probabilistic forecasts are issued for z =1, ..., Z locationsand k = 1, ...,K
horizons, D = Z x K random numbers are requwed to generate 1 space- tlme
trajectory.
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Space-time trajectories from probabilistic forecasts :(;‘-‘

It is important that the uniform random numbers accurately represent the spatio-
temporal correlation. Consider the purely temporal example (5 X K):
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Space-time trajectories from probabilistic forecasts :('i‘.‘
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» We compare copulas to model the spatio-temporal dependence structure and
sample correlated random numbers from it [2].

- Consider random variables (Xj, ..., Xp) with CDFs Fy_, ..., Fx, .
« Sklar’s theorem states that every multivariate CDF can be expressed using the

marginals and a copula C: Fy,  x, (Xq,..,Xp) =C (FXl(Xl), v Py (XD)). [3]

» The copula can be written as: C(uy, ..., up) = Fx, _x, (F,;ll(ul), ...,F,;Dl(uD)).

* Then, it is possible to sample random uniform numbers (Uy, ..., Up) and
generate space-time trajectories.



Data and approach ,(;‘I‘
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Probabilistic and multivariate forecast assessment :('i‘.‘

 Probabilistic and multivariate forecasts should be calibrated for optimal
decision-making processes.

* A flat rank histogram is a necessary condition for calibration, meaning that—on
average—it is equiprobable for any ensemble member to predict the
observation.

« Since there are D dimensions instead of 1, dedicated ‘prerank’ functions have
been proposed that result in the average and band depth rank histograms [4].
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* In this case, the Gaussian copula is
not flexible enough to model the
spatio-temporal dependence structure.

Gaussian Student-7 Clayton Empirical

* The Student-t copula results in too

high correlation or underdispersed |....|.\|I.|\|I||||. III||||I||||I|II“I. .|||I\|I|““IIIIII| Illlll\“““l““h

trajectories.

* The type of miscalibration from the
rank histograms for the Clayton copulag

is inconclusive except that calibration ‘||||I||||III|||||I |I||“‘“I||||IIII. I||||I|||||.|......‘ ‘|||||I|||II||||||II

overall is quite poor.

Figure: The multivariate rank histograms organized by copula
(columns) and prerank function. The top row presents the average

» The empirical copula produced slightly rank histogram and the bottom row represents the band depth rank
. : . hi 2].
underdispersed trajectories caused by 9"
the probabilistic forecasts. 1
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» Space-time trajectories are an important input to decision-making processes
where the spatio-temporal relationship contains valuable information.

» Space-time trajectories can be created through several techniques but we
focused on probabilistic forecasts and copulas.

» A copula is a versatile tool that allows modeling the dependence structure and
marginal distributions separately.

* We found that the parametric copulas (Gaussian, Student-t and Clayton) are in
this case not flexible enough for the relatively large number of dimensions.

* The empirical copula showed better performance, which is probably because it
IS nonparametric.
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