



## **Chapter 8 Forecasting Solar Radiation and PV Power**

**Elke Lorenz**, Jose Antonio Ruiz-Arias, Luis Martin, Stefan Wilbert, Carmen Köhler, Rafael Fritz, Alessandro Betti, Philippe Lauret, Mathieu David, Jing Huang, Richard Perez, Andreas Kazantzidis, Ping Wang, and Yves-Marie Saint-Drenan

Webinar 18.2.2021

Technology Collaboration Programme



- Introduction
- Empirical and Physical Solar Irradiance Forecasting Methods
- Irradiance forecasting with statistical and machine learning methods
- PV power forecasting and Regional Upscaling
- Evaluation of Irradiance and PV Power Forecasts
- Probabilistic Solar forecasts
- Recommendations for Solar Irradiance Forecasting

## **Overview of Solar Irradiance Forecasting Methods**





**Empirical and Physical Solar Irradiance Forecasting Methods** 

![](_page_3_Picture_1.jpeg)

- Irradiance Forecasting with Cloud Motion Vectors
  - Forecasting Using Ground-Based All Sky Imagers
  - Satellite-Based Forecasts
- Irradiance Forecasting with Numerical Weather Prediction

Introduction of basic principles of the different methods Discussion of advantages and limitations of the different models Many References for further explanation

### **Forecasting Using Ground-Based All Sky Imagers**

- Prediction of irradiance ramps with high temporal resolution
- High spatial resolution
- Typical forecast horizon 10-20 min
- Forecast for small areas

#### New research topic

**PVPS** 

Currently a benchmark of all sky imager forecasting methods is performed

![](_page_4_Picture_8.jpeg)

![](_page_4_Picture_9.jpeg)

# **PVPS**

## **Satellite-Based Forecasts**

C.

- Prediction for large areas
- Forecast horizon: several hours ahead

![](_page_5_Picture_5.jpeg)

![](_page_6_Picture_1.jpeg)

#### • Worldwide

• Forecast horizon: up to many days ahead

#### Examples of operational models and weather services operating these models

![](_page_7_Picture_1.jpeg)

- Examples of Machine Learning Models
- Time-Series Models Based on Measurements
- Statistical Post-Processing Methods/Hybrid models
  - Model Output Statistics to Reduce Forecast Errors
  - Combination of Forecast Model Outputs

Increasing importance in solar irradiance forecasting

Short general introduction to machine learning

Examples for machine learning in solar forecasting with references

![](_page_7_Picture_10.jpeg)

Discussion of advantages and limitations of different methods

## **PV Power Forecasting and Regional Upscaling**

![](_page_8_Picture_1.jpeg)

#### Simulation of PV Power Plant Production

- irradiance on plane of array
- PV simulation

## Overview of basic steps and short introduction to methods

![](_page_8_Figure_6.jpeg)

## **PV Power Forecasting and Regional Upscaling**

![](_page_9_Picture_1.jpeg)

## Estimation and Forecasting of Regional PV Power Feed-In

#### Challenges

- PV power feed-in by many small systems is not measured
- PV system details not known for many small systems

Overview of different upscaling methods

![](_page_10_Picture_1.jpeg)

#### **Questions:**

- How to quantify the overall uncertainty of irradiance forecasts?
- What has to be considered specifically for irradiance and PV power forecast evaluation?

![](_page_11_Picture_1.jpeg)

#### **Questions:**

- How to quantify the overall uncertainty of irradiance forecasts?
- What has to be considered specifically for irradiance and PV power forecast evaluation?

#### Error Measures

- Statistical error measures: RMSE, MAE and more
- Skill scores and persistence: Is a forecast better than a trivial reference model?
  - Introduction of "smart persistence"
- Analysis of Forecast Error with Respect to Solar Elevation and Cloud conditions

## **Analysis of Regional Forecasts**

- Averaging effects reduce forecast errors for regional forecasts
- Quantification of forecast accuracy for regional averages for regions of different size

![](_page_12_Figure_4.jpeg)

![](_page_12_Picture_5.jpeg)

#### Aim:

Evaluating the benefit of forecasts in terms of costs rather than using statistical error measures

Concept of firm power forecasts: Cost to covert a given forecast to a "firm solar forecast", e.g. using batteries, oversizing of plants

![](_page_13_Figure_4.jpeg)

![](_page_13_Picture_5.jpeg)

![](_page_14_Picture_1.jpeg)

#### Why probabilistic forecasts?

- Forecasts are inherently uncertain
- -> Uncertainty information allows more informed decision-making
- -> Probabilistic forecasts give uncertainty information for each forecast value

## **Types of probabilistic forecasts**

Ġ

- Quantile Forecasts
- Ensemble Prediction Systems

New topic in irradiance and PV Power forecasting

Overview basic principles and methods

![](_page_15_Figure_6.jpeg)

![](_page_15_Picture_7.jpeg)

## **Verfication of probabilistic forecasts**

Question: How to assess the quality of probabilistic forecasts?

-> "Reliability" is one important additional criterium

Introduction to probabilistic forecast verification

Basic concepts

**PVPS** 

• Frequently used scores and diagrams

![](_page_16_Figure_7.jpeg)

![](_page_16_Picture_8.jpeg)

![](_page_17_Picture_1.jpeg)

- Overview of different forecasting methods
  - Introduction to basic principles of different methods
  - Many references for more detailed information
  - New sections: forecasting with machine learning and regional PV power forecasting
- Discussion of advantages and limitations of the different methods for different requirements
- Recommendations on irradiance forecast evaluation
- Introduction to probabilistic solar forecasting
- Focus on models and uncertainty assessment rather than on products: No list of forecasting products (yet)

Elke Lorenz, IEA PVPS Task 16 elke.lorenz@ise.fraunhofer.de

![](_page_18_Picture_2.jpeg)