

Agrivoltaics: Chance to tackle climate change in agriculture?

ISES Webinar on AgriPV 10.02.2022

Petra Högy

Axel Weselek, Andrea Bauerle, Sabine Zikeli, Iris Lewandowski (UHO), Florian Reyer, Thomas Schmid (HBH)

© University of Hohenheim, Institute of Landscape and Plant Ecology, Department Plant Ecology (320b)

Funding: German Federal Ministry of Education and Research (BMBF)

Background

tages**schau**

🕨 🕨 Inland 🕨 Erneuerbare Energien: Regierung will mehr Solaranlagen auf Äckern

Erneuerbare Energien

Regierung will mehr Solaranlagen auf Äckern

Stand: 10.02.2022 08:01 Uhr

Die Bundesregierung will Solaranlagen auf Ackerflächen stark ausbauen. Die Felder sollen gleichzeitig für die Landwirtschaft und zur Stromerzeugung genutzt werden und so helfen, die Klimaziele zu erreichen.

Background Materials & Methods Results & Discussion Outlook

Background

Agriculture: What are the benefits of AV?

- Simultaneous production of food/feed and electricity
 - \rightarrow Increases land use efficiency
 - \rightarrow Eases conflicts between food and energy production
- Diversifies renewable energies provided by agriculture
- Reduced radiation is most likely negative for certain crops, however, there might also be some positive effects on harvestable yields
- Can provide shadow for grazing animals as well

Objectives of the project:

- Test the suitability of field crops for the cultivation under AV
- Measure the impact of solar panels on development, harvestable yield and yield quality of crops
- Analyse the effects of AV on micro-climatic conditions, soil and biodiversity
- Develop recommendations for the practical implementation of AV^{*}.

*https://www.ise.fraunhofer.de/conten

tudies/APV-Guideline.pdf

t/dam/ise/en/documents/publications/s 3

Field experiment

Site:

Hofgemeinschaft Heggelbach, Herdwangen-Schönach (Germany) Organic farm ("Demeter")

Crops:

- Winter wheat
- Potato
- Clovergrass
- Celeriac
- → Part of an organic crop rotation

Field plan: 1st year

Picture: Edgar Gimbel (modified)

Background Materials & Methods Results & Discussion Outlook

Measurements

Micro-climate: Solar radiation

Winter wheat

Micro-climate: Solar radiation

- Reduced solar radiation under AV
- Significant differences in terms of solar radiation from spring to late autumn.

Micro-climate: Temperature, humidity and precipitation

- Reduced soil temperature under AV
- Significant difference with regards to soil temperature from late spring until autumn
- No significant differences in terms of air temperature, air humidity and soil humidity.

Crop development: Winter wheat

Crop development: Clovergrass

Harvestable yield: Winter wheat

2018: Increase in grain yield by + 3 % under AV.

Harvestable yield: Potato

Harvestable yield: Celeriac

In both years, biomass of leaves was increased under AV.

Harvestable yield: Clovergrass

2018: Total yield was decreased by - 8 % under AV (4 cuts).

Outlook

AV provides a promising opportunity

→ Increased land use efficiency due to production of crop yield and energy yield at the same area

- Reduced solar radiation is the limiting factor
- Decrease in crop yield was overcompensated by energy yield
- Additional experimental years and test of other species are needed in order to provide clear conclusion.

Outlook

Shading and reduced transpiration under AV might be important in the future \rightarrow climate change

AV is a mitigation option with regard to climate change

AV might be on option for plant production in **arid areas** with intensive solar radiation and insecure energy supply

AV is a good opportunity to produce **healthy food and renewable energy at the same field site**

AV is a chance to tackle climate change in agriculture!

Thanks for your attention!

Project website: www.agrophotovoltaik.de

Contact:

petra.hoegy@uni-hohenheim.de

Modellprojekt APV-Resola

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Projektlaufzeit: März 2015 bis Juni 2019

Nationaler Fürderer Deutsche Barik 18