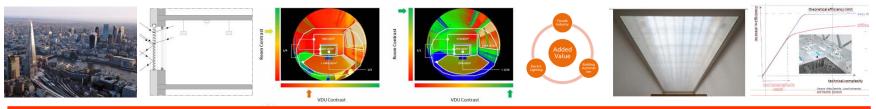
Integrated Solutions for Daylight and Electric Lighting


From component to user centered system efficiency

1/2018 – 6/2021

Motivation and Introduction to IEA SHC Task 61 / EBC Annex 77

IEA SHC Solar Academy Webinar 25./26 September 2020

Dr. Jan de Boer, Fraunhofer Institute of Building Physics, Stuttgart, Germany

2 % Intensity increase of electric lighting

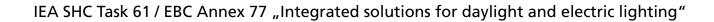
2% Increase of illuminated area

Each year since 2012

15 % of global electricity consumption

5% of green house gas

Rebound effects (low priced, versatile SSL)

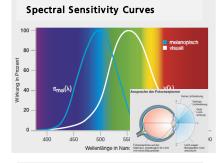


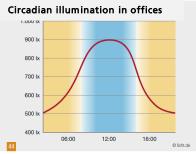
Background

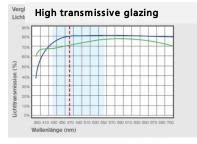
- Electric Lighting:
 - High efficient LED Systems, LEDs > 70% of market volume (Europe)
 - Digitalization of light

- <u>Facade</u>
 - 1,3 Billion m² of new facades per year (equivalent of the area of the city of London)
 - How this is done has huge impact on daylight supply
- <u>General Trend</u>: From Component to System solutions

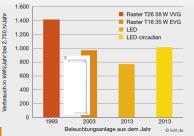
Motivation

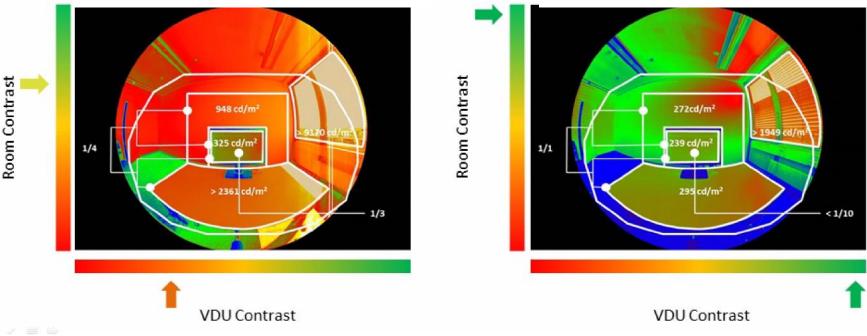

Open issues in the integration of day- and electric lighting




Open Issues

Example 1: User Perspective: Change in design and control parameters


- Lighting solutions have to meet not only visual but nonvisual effects as well
- Different needs depending on age
- Implications:
 - Different / additional targets in lighting design
 - We will see higher illuminance levels part of the time: But will that necessary mean higher energy demands?
- New products, methods, solutions coming / required
 - New daylight dependent controls
 - New luminaires (higher intensities, variable spectra)
 - New rating methods (hourly, spectral)
 - Use Cases, scenarios (different for offices, education, health care, museums, industry)


Energy demands for "circadian lighting"

Open Issues Example 2: Facade control is a daylighting problem

Without Glare Control

With Glare Control

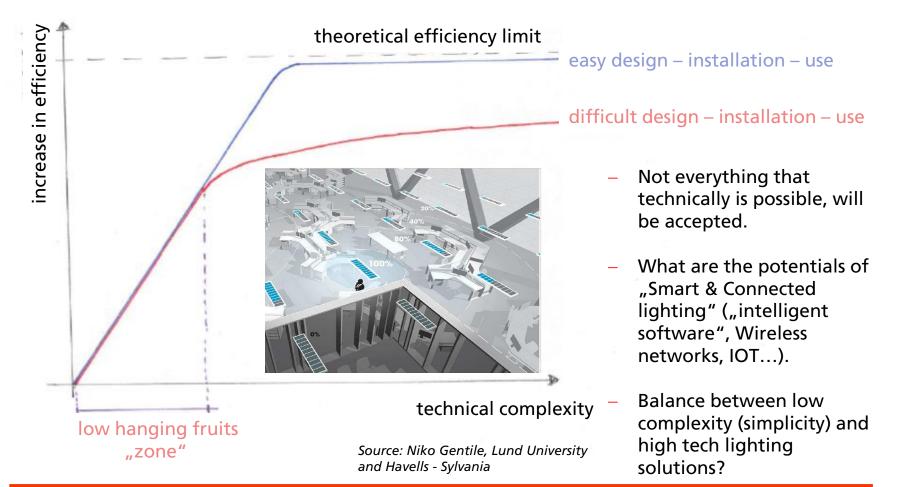
Open Issues Example 2: Facade control is a daylighting problem

Without Glare Control

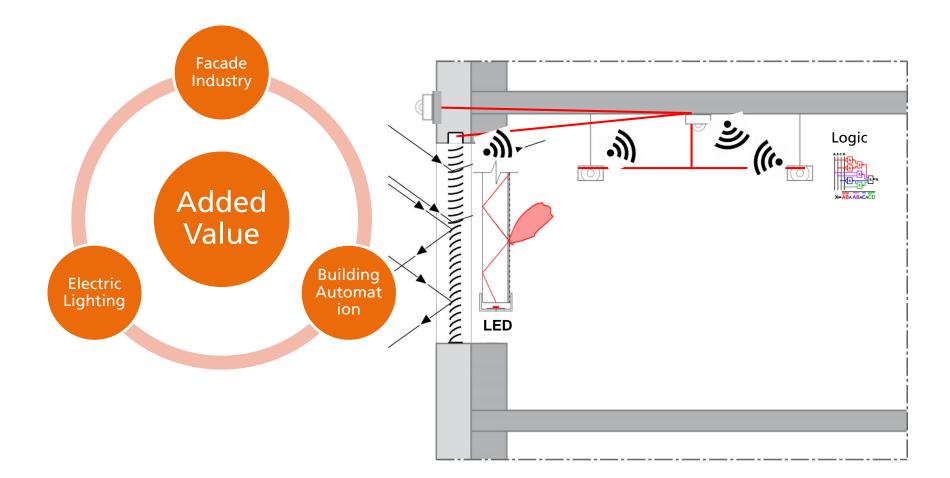
With Glare Control

Current Situation:

Sun- Glare Protection controlled by thermal (energy) parameters


Future, "Job to get done":

Integrated approaches relating to the lighting conditions induced by the facade <u>and</u> electric lighting at the workplaces.



Open Issues Example 3: Complexity vs. efficiency in lighting controls

Open Issues Example 4: Combine competencies: Market integration

Open Issues Example 5: Codes / Regulations < - > Tools & Methods

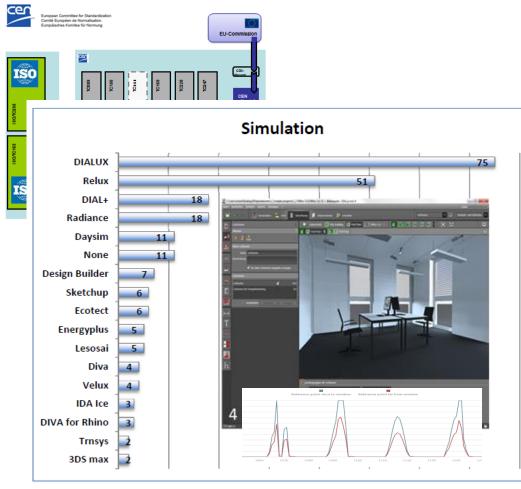
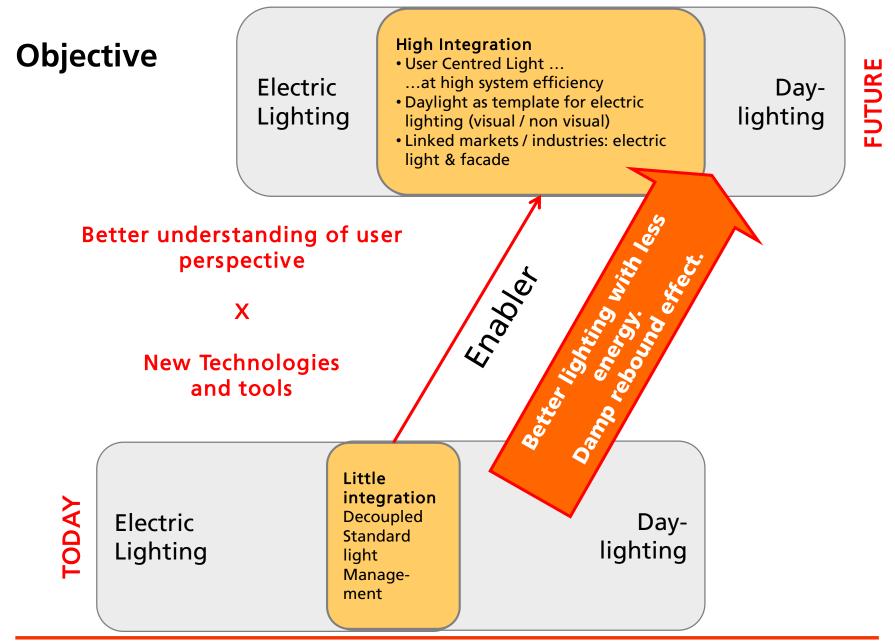



Figure 21: List of methods and tools used to handle Simulation in the retrofit process

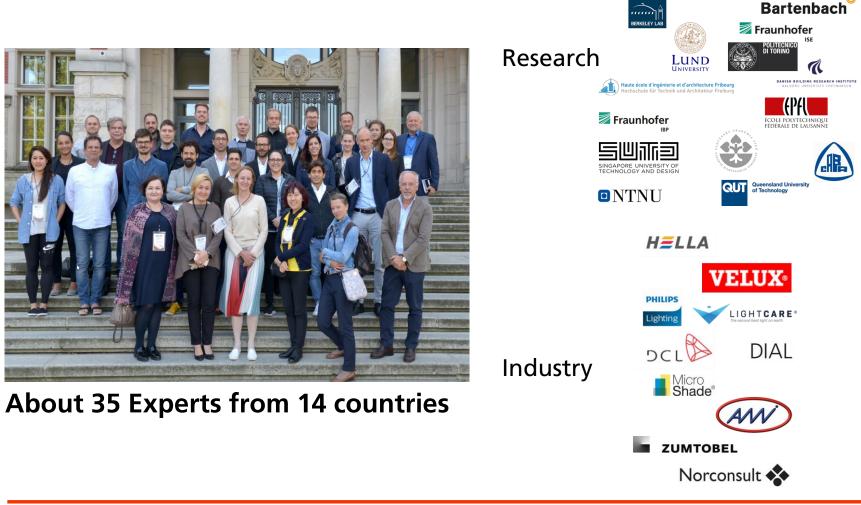
- System efficiency: Triggered by energy policies (EU: "Nearly zero energy buildings",...), cost
- Hourly and spectrally resolved methods required: for Standards (M480, CEN, ISO,...), for design tools.
- So far mainly research tools looked at
- Market leaders (hundred thousands of users) like Dialux, Relux are opening towards daylight and energy issues
- Basics of daylighting models developed in previous IEA work (T21, T31, T 50)

Task Structure

IEA SHC Task 61 / EBC Annex 77 Integrated solutions for daylight and electric lighting

From component to user centered system efficiency Operating Agent: J. de Boer, Germany

Subtask A B. Matusiak, Norway User Perspective, Requirements	Subtask B M. Fontoynont, Denmark Integration and optimization of daylight and electric lighting	Subtask C D. Geisler-Moroder, Austria Design support for practioners (Tools, Standards, Guidelines)	Subtask D N. Gentile, Sweden W.Osterhaus, Denmark Lab and field study performance tracking	
Joint Working Group		Evaluation method for integrated lighting solutions Virtual reality (VR) based Decision Guide		



Outcome for different target groups

- Designers: new and better integrated tools, system overview, design guidelines and system performance information (from lab and demo testing)
- Standardization bodies: integrated daylighting and electric lighting hourly energy rating method, spectral modelling including new datasets for facades and materials.
- *Industry:* work on the better integration of electric lighting and daylighting (façade)
- Software Companies: advanced lighting algorithms / software
- Building managers: more effective guidance on the calibration, ongoing adjustment and maintenance of integrated lighting control systems
- Policy makers: advice to stimulate deployment of successful, energy efficient lighting schemes with added benefits to the citizens.
- Building users: improved indoor conditions, to support health, comfort and energy efficiency

Who is behind the activity?

DTU Technical University of

KYUSHU

Denmark

bbri.be

Université catholique de Louvain

INFORM DESIG

AARHUS UNIVERSITY

Universidade de Brasília

Daylighting of Non–Residential Buildings

Position Paper

January 2019

The lack of advanced energy calculation and rating method impedes the design of innovative lighting installations integrating daylighting into "Human Centric Lighting" and "Smart & connected Light" concepts.

Actions Needed

The following actions by governmental, non-governmental organization ("NGO") and private entities could significantly drive this market up.

 Daylight as "renewable energy source": Recognition of daylight – which can be sufficiently quantified as an offset for electric lighting - as a "renewable energy source" included for instance in subsidy programs as a known from other market

Revision of ordinances: Revision of ordinances to demand the incorporation of

- technically working and economically advantageous daylighting solutions: Floor plans/architecture: Where not yet implemented, specification of a minimal ratio of window to floor area of spaces (for instance in central Europe
 - between 1/8 1/10). Specifications for minimum view out. Façade technology: Inclusion of light redirection technologies in the façade.
 - Selection of daylighting supportive combinations of glazing and sunshading/
 - Building Management Systems: Usage of daylight dependent electric lighting controls. Control of sunshading/glare protection dependent on indoor space
 - occupancy sensing (visual comfort driven when occupied, solar gain driven when unoccupied: i.e., maximum gains in winter, minimum in summer).

NGOs and private public partnerships

Sustainability certificates: Use sustainability certificates to promote daylighting.

- Introduce daylighting if not included yet or revisit existing older certificates and
- Memoranda of understanding of key players in the market: Agreement on reduction goal for lighting energy consumption with a fixed time horizon. Daylight will have to play a key role in this. A recent Swiss initiative to reduce by half the energy consumption for lighting by 2025 could serve as a template. https://www.minergie.ch/media/mm_minergie_licht_2018_20180913_1.pdf

Private sector (design, industry)

- Design process: Introduction of processes ensuring certain daylight quality levels (e.g., by parametric, automated design tools). Deployment of concepts from new daylighting standards like EN 17037 "Daylight of Buildings." Design tools: Establishment of more refined rating methods in standards and
- design tools supporting new product features and integrated building
- Integrating day- and electric lighting: Better integration of daylighting and electric lighting in a holistic lighting design approach is an important lever for increasing efficiency and better matching lighting to the user's needs (refer also to http://task61.iea-shc.org/)

SHC TCP Position Paper

January 2019

Page 8/8

Daylighting of Non-Residential Buildings

https://task50.iea-shc.org/Data/Sites/1/publications/IEA-SHC-Daylighting-Non-Residential-Buildings-Position-Paper.pdf

SOLAR HEATING & COOLING PROGRAMME

Follow us: http://task61.iea-shc.org/ ...and of course ...

...use light intelligently.

Alexander Lervik, Designer, Stockholm

