UNIVERSITÉ DE **LA RÉUNION**

Thursday 6 May 2021

Webinar: Scaling Up High - PV and Renewables Penetration Scenarios

High PV penetration on the insular grid of Reunion Island

Dr. Mathieu DAVID mathieu.David@univ-reunion.fr

Electric grid and current renewable penetration

SES

Solar Energy Society

Overview of issues and expected solutions

 \circ Increase of the intermittent renewables integration limit

 \circ Mitigate the ramping events of PV (smoothing)

- \odot Integrate more PV generation
- Balance the supply and the demand with increasing PV penetration

Project: PEPS Réunion

- Mitigation of ramp events with spatial distribution
- Forecasting of PV production
- Energy storage systems (ESS)
- > Overbuilding PV capacity

First step: modelling current PV generation

Main model assumptions

\odot Solar irradiance and weather parameters

- Satellite estimates (1 km 15 min)
- Ground measurements (34 stations 1 h)
- Digital terrain model with available surfaces (IGN 25cm)
- \circ Installed PV power

IR

PIMENT

- 190.4 MW_{peak} (2018)
- 23 distinct areas (distribution networks)
- Simplified PV model
- Model calibration with real data (15min time step)
- Overall model accuracy (2018)
 - MBE (bias) = -1,2%
 - RMSE (square error) = 17,1%

Second step: scenarios of PV penetration

\odot Definition of 12 scenarios

PIMENT

- Replace fossil fuels with PV (2 scenarios)
- Base load with PV (3 scenarios)
- Supply of specific loads with PV (3 scenarios)
- Firm day-ahead PV forecasts (1 scenario)
- Diurnal trapeze (2 scenario)
- 100% PV generation (1 scenario)

$\,\circ\,$ Minimize the LCOE for every scenario

- Mark Perez's method
- Optimal combination of storage (Li-ion) and overbuilding PV capacity
- Consideration of PV and storage prices evolution up to 2050

6

R Scenarios in detail

Importance of overbuilding PV capacity

UR

PIMENT

Oversizing the PV capacity is a key feature to achieve affordable energy supply with high PV penetration.

SFS

Solar Energy Society

Sizing results

• Negligible influence of the variation of the CAPEX and OPEX along the years on the technical sizing

Evolution of the LCOE up to 2050

 Compared to the current situation, high PV penetration should decrease the LCOE

A path toward high PV penetration

Selection of the most relevant scenarios

UR

PIMENT

A path toward high PV penetration

Selection of the most relevant scenarios

UR

PIMENT

UNIVERSITÉ DE **LA RÉUNION**

POUR l'ÉNERGIE, l'ENVIRONNEMENT ET LE BÂTIMENT

Thanks for your attention !

Dr. Mathieu DAVID mathieu.David@univ-reunion.fr

