

Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications: Third Edition

Manajit Sengupta, Aron Habte and Jan Remund
International Solar Energy Society (ISES) Webinar: February 18, 2021

Chapter Authors

• 10 chapters, 39 authors, 13 countries

 Alessandro Betti, Philippe Blanc, Mathieu David, Yves-Marie Saint-Drenan, Anton Driesse, Janine Freeman, Rafael Fritz, Christian Gueymard, Jing Huang, Andreas Kazantzidis, Jan Kleissl, Carmen Köhler, Tomas Landelius, Vincente Lara-Fanego, Philippe Lauret, Luis Martin, Mark Mehos, Richard Meyer, Daryl Myers, Kristian Pagh Nielsen, Richard Perez, Carlos Fernandez Peruchena, Jesus Polo, Dave Renné, Lourdes Ramírez, Jan Remund, Jose Antonio Ruiz-Arias, Manajit Sengupta, Manuel Silva, David Spieldenner, Thomas Stoffel, Marcel Suri, Stefan Wilbert, Stephen Wilcox, Frank Vignola, Ping Wang, Yu Xie, Luis F. Zarzalejo

Introduction to Chapters

- Chapter 1: Why Solar Resource Data Are Important to Solar Power: provides a short summary of what is contained in each of the chapters.
- Chapter 2: Overview of Solar Radiation Resource: explains the basic concepts and terms, which are essential for understanding subsequent chapters.
- Chapter 3: Measuring Solar Radiation and Relevant Atmospheric Parameters: describes the state of the art in measuring solar radiation and offers methods and protocols to produce a quality assessed dataset.
- Chapter 4: Modeling Solar Radiation—Current Practices: focuses on modeling solar radiation and provides an understanding of current practices for calculating solar radiation using satellite-based measurements or other inputs.

Introduction to Chapters

- Chapter 5: Further Relevant Meteorological Parameters: introduces measurement sources and models for obtaining meteorological and solar parameters that are required for improved accuracy in solar modeling.
- Chapter 6: Solar Resource Data: presents several examples of solar resource data sets both ground measured and derived from satellites.
- Chapter 7: Measurement and Model Uncertainty: provides an understanding of data quality assessment and how to estimate and interpret uncertainty in both measured and modeled data sets.
- Chapter 8: Forecasting Solar Radiation: provides a summary of forecasting methods used to predict solar radiation at various timescales.

Introduction to Chapters

- Chapter 9: Applying Solar Resource Data to Solar Energy Projects: recommends best practices to apply solar datasets in various stages of a solar power project.
- Chapter 10: Future Work: provides an overview of outstanding issues that will need additional research and may be taken up by IEA PVPS Task 16 in the future.

Handbook Update Highlights

- New instrument classification standards (ISO 9060:2018) in included.
- Updated (spectral) radiation models including fast models.
- New chapter on "Further relevant meteorological parameters" including aerosols, temperature, snow, ultraviolet radiation and surface albedo.
- Updated inventory of available data sources.
- Updated chapter on measurement and modeling uncertainty and new information on automated data quality tests.
- Update to chapter on forecasting including all-sky imager, use of AI in forecasting & probabilistic forecasting, PV power forecasting and regional upscaling.
- Updated guidelines and examples for applying Solar Resource Data to Solar Energy Projects.

Thank You to all our Reviewers!!

Jan Remund, Stefan Wilbert, Lucien Wald, Georg Beyer, Thomas Stoffel, Marion Schroedter-Homscheidt, Steve Wilcox, Nate Blair, Peter Gotseff, Jaemo Yang, Pedro Jimenez Munoz www.iea-pvps.org

On behalf of IEA PVPS Task 16

Manajit.Sengupta@nrel.gov

