

PVT Systems -Key Performance Indicators

Daniel Zenhäusern, daniel.zenhaeusern@spf.ch SPF Institute for Solar Energy Technology, Rapperswil, Switzerland ISES Webinar, 25.3.2020

What's the purpose of key performance indicators ?

Compare the performance of a system (or a part of it)

... with its rated, expected or optimal performance

... with the performance of another system

(Values can come from measurement data or simulations)

KPIs defined in Task 60

Energy	 Thermal and electrical solar yields per m² Thermal and electrical utilisation ratios (yield/irradiation) Power-weighted collector temperature 			
	 Solar thermal fraction 			
	 Solar electrical fraction 			
	 Seasonal performance factor (for heat pump systems) 			
Economics -	 Specific investment cost per m² Levelized cost of heat and electricity (LCOH, LCOE) 			
	 Saved fuel and grid electricity cost 			
Environment -	 Avoided primary energy depletion [kWh oil-eq/(a*m²)] Avoided global warming impact [kg CO2-eq/(a*m²)] 			

Task 60 reports

www.iea-shc.org

→ Available this spring on task60.iea-shc.org

Building complex «Sotchà» Switzerland

- Each system with a 30 kW heat pump and 5 x 170 m boreholes
- Solar heat in buildings B and C for borehole regeneration DHW and SH

Sotchà – Energy balance (July 2018 – June 2019)

(Building A has high DHW consumption. B has low SH consumption.)

Sotchà – Solar yields and operating temperatures

Sotchà – Solar utilization ratios

PVT has the highest «energetic solar utilization ratio», 33% more than PV & T.

Sotchà – Seasonal Performance Factors

Sotchà – Seasonal Performance Factors

- SPF_{HP} similar for all systems, in the longterm likely to be better for B and C
- SPF^{total}_{SHP+} highest for building C, because of highest amount of solar heat to storage
- SPF^{Grid}_{SHP+} highest for building A, because of highest amount of slef-consumed PVelectricity

→ Final report this spring on <u>www.spf.ch</u>

Comparison of systems in operation

System Nr.	Country	Location	Application	Collector Type	Gross area [m²]
1	Spain	Zaragoza	DHW	covered	29.7
2	Spain	Zaragoza	DHW, SH	covered	10
3	Spain	Ibiza	DHW	covered	147.6
4	Spain	Zaragoza	DHW, Pool	covered	46.2
5	Italy	Catania	DHW	uncovered	3.3
6	Switzerland	Näfels	Preheating of ground water source	uncovered	292
7	Denmark	Egedal	DHW, SH	uncovered	80
8	Netherlands	Katwoude	Electricity and Heat for cheese production processes	concentrator	226.2
9	Czech Republic	Prerov	Ground source regeneration, source for heat pump, DHW (test installation)	uncovered	188
10	Italy	Suello	Ground source regeneration, source for heat pump	covered	26.1
11	Germany	Freiburg	DHW (test installation)	covered	48
12	Denmark	Kgs. Lyngby	DHW	uncovered	3.1
13	Switzerland	Wettswil am Albis	DHW, SH	uncovered	45.9
14	Switzerland	Ostermundigen	Ground source regeneration, source for heat pump	uncovered	622
15	Switzerland	Rapperswil	DHW (test installation)	uncovered	9.9
16	Switzerland	Obfelden	Ground source regeneration, source for heat pump, DHW	uncovered	423
17	Switzerland	Scuol	Ground source regeneration, source for heat pump	uncovered	130.3
18	France	Amberieu-En-Bugey	DHW	uncovered	6.4
19	France	StGenis-Les-Ollieres	DHW	uncovered	9.6
20	France	Sete	DHW, Pool	uncovered	300
21	France	Perpignan	DHW, Pool	uncovered	300
22	Australia	South Perth	DHW, SH	air heater	7.5
23	UK	Swansea	DHW , SH	evacuated tube	27
24	Germany	Enge-Sande	Heat and Cold (thermal HP) for office	concentrator	34.2

Solar utilization ratios

Solar thermal utilization ratio

60% 60% Hot water Hot water & Hot water & GS-Reg & Other Space heating Pool **HP-source** 50% 50% Solar utilization ratio 40% 40% 1 30% 30% н Т 1 1 1 20% 20% 10% 10% 0% 0%

All systems

www.iea-shc.org

Solar electrical utilization ratio

Solar thermal utilization ratio – temperature dependence

Solar thermal utilization ratio (only uncovered collectors)

Specific investment cost per m²

Levelized costs of heat and electricity

- Only costs of the solar energy system components (w/o backup)
- Attribution of investment costs to solar heat system (2/3) and solar electricity system (1/3), unless exact number is provided
- Yearly maintenance cost : 1% of investment cost (unless provided)
- System lifetime set to 25 years
- Real discount rate set to 3%

Levelized costs of heat and electricity

The End

