

Overview of the PVT Industry and Perspectives

IEA SHC Task 60 2018-2020

Webinar March 25, 2020

Laetitia Brottier, **DualSun**Cofounder and head of innovations
task60.iea-shc.org

DualSun? PVT manufacturer since 2010

France - 600 PVT

Switzerland-40 PVT

Production
And innovation
Made In France

France - 12 PVT

Norway-110 PVT

Netherlands – 308 PVT

Australia – 30 PV I

Hong-Kong – 128 PV I

- ✓ > 1,100 installations
 around the world
- √ 15,000 m² of panels sold
- √ 573 % growth over 3 years

 (Deloitte Fast 50 Prize)
- ✓ 6 international family patents
- ✓ 3rd version of PVT module
 Wave, Flash, now Spring
- ✓ 17 trophees of best product over the world

PVT = profitable electricity + cheap heat

Photovoltaic market

Total capacity: 505 GW (2018) (i)

Global weighted-average

LCOE of utility-scale solar PV:

85€/MWh (2018) (ii)

LCOE residential PV < 9kWc:

DE, 2016: 155€/MWh (iii)

FR, 2017 : 130€/MWh (iv)

20-25 gCO2e /kWh (v)

Solar thermal market

Total capacity: 473 GW (2017) (vi)

WORLD: 80€/MWh (vi)

Carbon impact 2 times

lower than PV (vii)

Average LCOH: Pool heating: 10€/MWh (vi) District heat: 40€/MWh (vi) **Residential DWH:**

Photovoltaic market is more profitable and fast growing. **Solar thermal** is the cheapest solar solution for heating.

⁽vii) INIES https://www.base-inies.fr/iniesV4/dist/consultation.html (files of French Ministery for PV and ST)

⁽i) REN21, renewables global status report, 2019

⁽ii) Irena, Renewable Power Generation Costs in 2018

⁽iii) Taylor et al., Irena, True-costs-of-renewables, Lecture at Bonn, 2017

⁽iv) Etude de la compétitivité filière solaire française, iCare, Enerplan, Ademe, 2017

⁽v) Louwen et al., 2016, https://www.nature.com/articles/ncomms13728

⁽vi) Solar Heat Worldwide, 2019

Towards positive energy and low carbon buildings

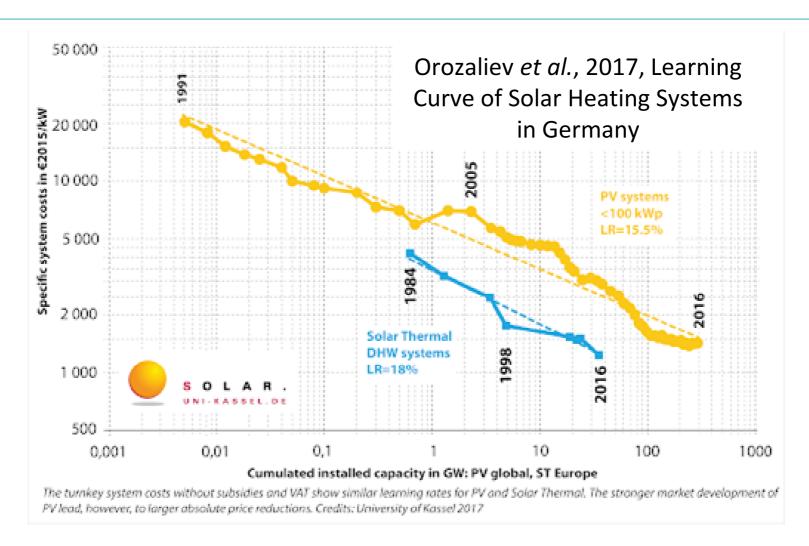
Buildings and construction: 39% of energy-related carbon dioxide (CO2) emissions World Green Building Council: Coordinated action towards 100% Net Zero carbon buildings by 2050

In the French label E+C- (2019): constraints in energy consumption and GHG emissions (LCA).

GHG emissions threshold : LCA of the building	Ex : multihouse building
Global	<1550
For construction products and equipments	<800

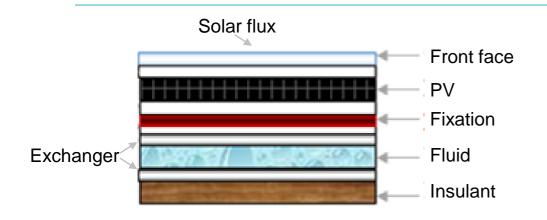
PVT + GSHP for refurbishment and new building

« One thing is certain: we will always need to produce domestic hot water (DHW) and the space on our buildings' rooftops is not infinite...


... the "2-in-1" technology (DHW and photovoltaic production), that combines two essential energy needs of buildings today and tomorrow, is very efficient.

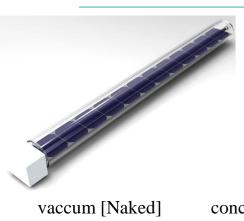
We use this technology for our own buildings and we observe its excellent performance every day.»

Martin Bouygues, CEO of Bouygues


Price learning curve

PVT is an opportunity for solar thermal to benefit from the quick reduction in PV costs /!\ the clients expect to see the same % in price reduction for PVT than they have with PV: a challenge as the selling volume is really not the same

PVT = {PV + ST}, design variations in all layer


	Variants	
Solar flux	Flat plate collector	
	Concentration CPVT	
	Trackers	
	« WISC »*	
Front face	Low emissivity coating	
insulation	Overglazed	
	Vaccum	
PV	Crystalline cells	
	Thin film	
	Semi-transparent	
	Lower	
	packing factor	

^{* «} WISC »: Wind and Infrared Sensitive Solar Collector sometimes said "uncovered"

	Water/ glycol water
El. da	Air
	Nanofluid
Fluid	Heat pipe
	Refrigerant
	Bi-fluids
Exchanger material	Copper
	Aluminium
	Stainless steel
	Polymer
	Sheet-and-tube
	Serpentine
Exchanger	roll bond
geometry	chanel
	Free
	With fins
	Below
Contact exchanger (or fluid) with PV module	Above
	Both
	Multiple passes
	Direct (without PCM)
	Indirect via PCM
Exchanger Fixation (if applicable)	Gluing
	Encapsulation
	Mechanical fixing
Back face	With rear insulation
insulation	Without insulation

Illustration of the wide diversity in PVT concepts in the market

concentration on tracker [SunOyster] without tracking [Solarus]

air-based [Systovi]

overglazed [Endef]

stainless steel [DualSun Wave]

polymer [DualSun Spring]

copper [Fototherm]

aluminium: serpentine [3S]

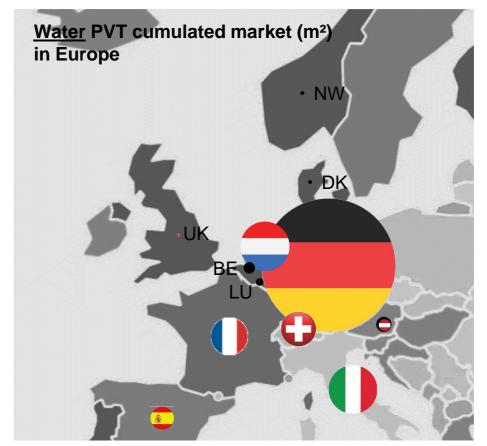
roll bond [Sunerg]

extruded [Li-Mitra]

Norms: PV (IEC 61215+61730) + ST (ISO 9806)

Since 2013, SolarKeymark clearly identifies the quality norm approval for flat plate PVTs:

- the whole PVT module has to repass the IEC61215+61730 for photovoltaic quality, even if the PV laminate is already certified
 - the whole PVT module has to pass ISO9806 in MPPT mode,
 for solar thermal quality.


/!\ PV ageing cycling = up to +85°C only

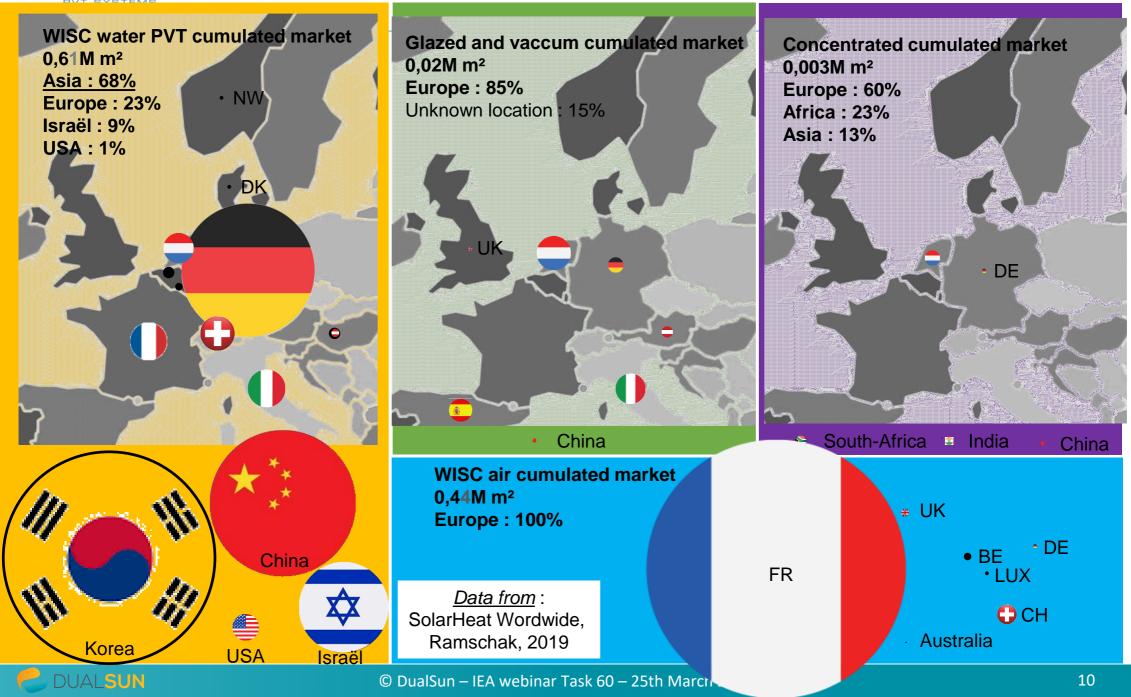
If stagnation >85°C, no guaranty with the certifications
that the PV part of the PVT stands cycles
at the stagnation temperature
with no degradation on PV performances

PVT manufacters are mainly european

Data from: SolarHeat Wordwide, Ramschak, 2019

Each manufacturer mainly sells in its domestic market.

🔯 Israël



Australia

Excluding France (air), WISC wPVT largely dominates the market

Applications: wide typology of clients, and systems

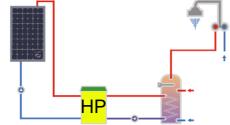
Individual homes (DHW, Pools)

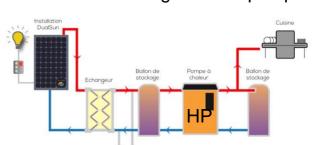
Campsites, restaurants and hotels

Multihouse building, social housing

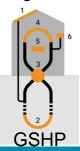
Public pools, gymnasium

Schools, nursery


Establishments for Elderly, hospitals


Direct SDHW

Direct pool heating


Direct glycol to heat pump

Cold side storage to heat pump

To ground

Barriers: unfair supports

Production: 6000kWh_{el} + 1500kWh_{th}

(6kWc+SDHW in France)	PV+ST	PVT
PV support	1740€	1740€
ST support	2000€	1000€

For the same production,
PVT most of the time is less supported
than the side by side PV+ST
due to unfavorable criteria for PVT

(power at high temperature, minimum kWh/m², energy labelling*, classified as « unglazed », PVT excluded ...)

^{*} Data required for CDR (EU) N°811/2013 and N°813/2013 for energy labelling is not adapted to PVT (calculated at dT=40°C)!

SWOT: GO PVT!

Strengths	Weaknesses
 PVT already competitive //PV >55 manufacturers in the market IEA Task 35: technical issues behind us Norms IEC/ISO already in place Already thousands of successful PVT installations 	 Lack of awareness from prescribers (still a young technology) More complex than PV Unfair public supports
Opportunities	Threats
 Taking advantage of PV costs Best energy solution for positive buildings Many plumbers already qualified in solar heating Synergy with heat pumps 	 As all REN: fossil price! Follow the rhythm of PV prices Difficulty in Europe in financing massive investments for industrial companies in fast growing Emergence of poor quality with a growing market?

www.iea-shc.org

Laetitia Brottier
DualSun
laetitia.brottier@dualsun.fr

task60.iea-shc.org

Linkedin #PVT

https://en.wikipedia.org/wiki/Photovoltaic_thermal_hybrid_solar_collector

2 Rue Marc Donadille, 13013 Marseille, France

contact@dualsun.fr