

Eleonora Leonardi, Pavel Sevela University of Innsbruck, Austria

ath, also and the s

A best-practice database & decision guidance tool

to exemplary energy efficient interventions in historic buildings

Architect Franz Baumann

Architect Franz Baumann

Architect Franz Baumann

Architect Franz Baumann

PV array on monumental school in Innsbruck

PV array on monumental school in Innsbruck

8

PV array on monumental school in Innsbruck

External walls

Windows

Roof

Basement

Heating system

Ventilation system

Solar energy

11

External walls

Windows

Roof

Basement

Heating system

Ventilation system

Solar energy

12

Can renewables be installed on the roof?				
YES	NO			

Can renewables be installed on the roof?				
YES	NO			

Can renewables be installed on the roof?	
s the facade available for renewables?	
YES NO	

Can renewables be installed on the roof?				
Is the facade available for renewables?				
YES NO				
Would the land be available for renewables?				
YES NO				
Free-standing renewables & renewables integrated into landscape	Participation models of renewable energies via power network			

Can renewables be installed on the roof?				
YES	NO			

Can renewables be installed on the roof? YES NO				
Roof-integrated	Roof-non-integrated			

Can renewables be installed on the roof? YES NO				
Roof-integrated	Roof-non-integrated			

External walls

Windows

Roof

Basement

Heating system

Ventilation system

Solar energy

Selection through map

For the alpine space With possibility to SKIP

Connection with building typology

Blockbau (Architype Blockbau)

Decorated	Wood	(Architype	Bundwerkbau)
Beconatea			Danawenkoud	J

Natural stone (Architype Innsalzachbauweise)

Wood and natural stone (Architype Salzburger Flachgauhof)

Connection with building typology

Blockbau (Architype Blockbau)

Decorated	Wood	(Architype	Bundwerkbau
			Banancinoua

Natural stone (Architype Innsalzachbauweise)

Wood and natural stone (Architype Salzburger Flachgauhof)

See also solutions for WINDOWS

PRINCIPLES

Capillary active

EXAMPLES

Dense Wood fiber

Internal insulation

Capillary active

REMOVABLE EXTERNAL INSULATED FAÇADE

Internal insulation What is the solution?

The solution is a removable external insulated façade inclusive windows. The insulation is made of blown cellulose. The façade is prefabricated, also the windows are assembled in the factory. The connection is ensured by steel console mounted on the existing wall and a steel counter piece on the new façade. A wooden distance beam ensures the

10.00

positioning of the façade although irregularity of the existing one. The existing façade is measured with a laser. Some details can be finished in the building site, such as the adjustment layer in the window reveal and the plaster layer.

Why does it work?

This solution gives the possibility to refurbish (with energy improvement) the existing façade of buildings with small building site's effort and high quality. The solution fits to historical building because it is reversible. The thermal bridges (window-wall) are also optimized, thanks to the prefabrication. The moisture safety is ensured by the plates of the façade.

Description of the context:

The building where the solution was built is an old not listed farmer building. The wish of the building owner was to refurbish the building energetically. The old façade hasn't particular historical value apart from one painting. This was covered with the façade and in future will be available again.

See also solutio Pros and Cons:

 $\boldsymbol{\Gamma}$

The biggest pros are the small building site's effort and the high quality reached thanks to the prefabrication. One con is the covering of the existing façade, especially in case of historical value of it. The change of the outside volume of the building can also be considered as a con for the conservation compatibility.

Discover more about the building where this solution was built in!

ade with cellulose lation nal removable facade

Removable Facade	Active Overflow
walls 🔍	HVAC 🔍
Internal insulation	Integrated PV
WALLS O	SOLAR
Adding Glass from inside WINDOWS	

 Define the renovation measure (PROBLEM)

- Define the renovation measure (PROBLEM)
- Associating the architypes & GUIDE users to the appropriate renovation approach to find SOLUTION

- Define the renovation measure (PROBLEM)
- Associating the architypes & GUIDE users to the appropriate renovation approach to find SOLUTION
- DEMONSTRATE on real cases

Alpine Space

REMOVABLE EXTERNAL INSULATED FAÇADE

What is the solution?

The solution is a removable external insulated façade inclusive windows. The insulation is made of blown cellulose. The façade is prefabricated, also the windows are assembled in the factory. The connection is ensured by steel console mounted on the existing wall and a steel counter piece on the new façade. A wooden distance beam ensures the

positioning of the façade although irregularity of the existing one. The existing façade is measured with a laser. Some details can be finished in the building site, such as the adjustment layer in the window reveal and the plaster layer.

Why does it work?

This solution gives the possibility to refurbish (with energy improvement) the existing façade of buildings with small building site's effort and high quality. The solution fits to historical building because it is reversible. The thermal bridges (window-wall) are also optimized, thanks to the prefabrication. The moisture safety is ensured by the plates of the façade.

Description of the context:

The building where the solution was built is an old not listed farmer building. The wish of the building owner was to refurbish the building energetically. The old façade hasn't particular historical value apart from one painting. This was covered with the façade and in future will be available again.

Pros and Cons:

The biggest pros are the small building site's effort and the high quality reached thanks to the prefabrication. One con is the covering of the existing façade, especially in case of historical value of it. The change of the outside volume of the building can also be considered as a con for the conservation compatibility.

Discover more about the building where this solution was built in!

- Define the renovation measure (PROBLEM)
- Associating the architypes & GUIDE users to the appropriate renovation approach to find SOLUTION
- DEMONSTRATE on real cases
- "Inspire users to renovate, not to rebuilt, by demonstrating real solutions"

HiBER ATLAS platform

FILTER

Home Login/Registration About ATLAS

Please note that this is a beta version of the HiBER ATLAS platform which is stil undergoing final testing. Many more projects will be included in the next few weeks. Please check again later! Should you encounter any bugs, glitches, lack of functionality or other problems on the website, please let us know immediately so we can rectify these accordingly. Your help in this regard is greatly appreciated! You can write to us at this address atlas@eurac.edu

Contact

www.hiberatlas.com

atlas@eurac.edu

Contact

SOLAR HEATING & COOLING PROGRAMME INTERNATIONAL ENERGY AGENCY

www.uibk.ac.at/bauphysik pavel.sevela@uibk.ac.at

2019.02.22 Osramhuset (The Osram Building) Land:

Sprachen: en:de:if

Villa Castelli Sprachen: en;de;it

